翻訳と辞書 |
Gravitational-wave observatory : ウィキペディア英語版 | Gravitational-wave observatory
A gravitational-wave observatory (or gravitational-wave detector) is any device designed to measure gravitational waves, tiny distortions of spacetime that were first predicted by Einstein in 1916. Gravitational waves are perturbations in the curvature of spacetime caused by accelerated masses. The existence of gravitational radiation is a specific prediction of general relativity, but is a feature of all theories of gravity that obey special relativity. Since the 1960s, gravitational-wave detectors have been built and constantly improved. The present-day generation of resonant mass antennas and laser interferometers has reached the necessary sensitivity to detect gravitational waves from sources in the Milky Way. Gravitational-wave observatories are the primary tool of gravitational-wave astronomy. As of late 2015, no direct detection of gravitational waves had been accomplished. However, a number of experiments had provided evidence that gravitational waves did exist, notably the observation of binary pulsars, the orbits of which evolve precisely matching the predictions of energy loss through general relativistic gravitational-wave emission. The 1993 Nobel Prize in Physics was awarded for this work. On 17 March 2014, astronomers at the Harvard-Smithsonian Center for Astrophysics announced the apparent detection of the imprint gravitational waves in the cosmic microwave background, which, if confirmed, would provide strong evidence for inflation and the Big Bang. However, on 19 June 2014, lowered confidence in confirming the findings was reported; and on 19 September 2014, even more lowered confidence. Finally, on January 30, 2015, the European Space Agency announced that the signal can be entirely attributed to dust in the Milky Way. ==Complications== The direct detection of gravitational waves is complicated by the extraordinarily small effect the waves would produce on a detector. The amplitude of a spherical wave will fall off as the inverse of the distance from the source. Thus, even waves from extreme systems like merging binary black holes die out to very small amplitude by the time they reach the Earth. Astrophysicists expect that some gravitational waves passing the Earth may be as large as , but generally no bigger.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Gravitational-wave observatory」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|